A Novel Design Method for the Geometric Shapes of Flux Modulation Poles in the Surface-Mounted Permanent Magnet Vernier Machines
نویسندگان
چکیده
This paper presents a novel approach to determine geometric shapes of flux modulation poles (FMPs) by using the analytical equations for flux density distribution due to armature windings. The magnetic field by the windings is modulated by the FMPs. Then, the resulting magnetic field produces the torque by interacting with the rotor permanent magnets (PMs). Thus, to improve the output power of the machine, the FMP shape should be optimized in terms of the magnetic flux modulation. To do so, the permeance function which can consider the changes of the geometric parameters for the FMPs is defined using the Fourier series analysis method. Consequently, the working harmonic, which is the spatial harmonic of the air-gap magnetic field due to the windings and creates the torque, is given as the function of the geometric variables. The optimal set of design variables to maximize the working harmonic in the analytical equation is obtained by employing the genetic algorithm. The finite element analysis results show that the proposed method improves the output torque of the surface-mounted permanent magnet vernier (SPMV) machines up to 31%. In addition, the torque ripple can be minimized by regulating the harmonic components of the permeance in the analytical equations.
منابع مشابه
Influences of Winding MMF Harmonics on Torque Characteristics in Surface-Mounted Permanent Magnet Vernier Machines
This paper presents the influences of winding magneto-motive force (MMF) harmonics on the torque characteristics in surface-mounted permanent magnet vernier (SPMV) machines. Based on the magnetic gearing effects, the armature magnetic field of the SPMV machines is modulated by flux modulation poles (FMPs). In the modulated magnetic field, a working harmonic which corresponds to the number of th...
متن کاملPerformance Analysis of a Novel Three-phase Axial Flux Switching Permanent Magnet Generator with Overlapping Concentrated Winding
This paper proposes a novel axial flux switching permanent magnet generator for small wind turbine applications. Surface mounted axial flux switching permanent magnet (SMAFSPM) machine is a new type of these machines that is introduced in this paper. One of the most important challenges in optimal designing of this kind of machines, is ease of construction and maintenance. One of the main featu...
متن کاملDesign Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm
This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...
متن کامل2D Analytical Modeling of Magnetic Vector Potential in Surface Mounted and Surface Inset Permanent Magnet Machines
A 2D analytical method for magnetic vector potential calculation in inner rotor surface mounted and surface inset permanent magnet machines considering slotting effects, magnetization orientation and winding layout has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in quasi- Cartesian coordinate by using...
متن کاملSensor-less Vector Control of a Novel Axial Field Flux-Switching Permanent-Magnet Motor with High-Performance Current Controller
Axial field flux switching motor with sandwiched permanent magnet (AFFSSPM) is a novel of flux switching motor. Based on the vector control method, the mathematical model of the AFFSSPM is derived and the operating performance of the AFFSSPM in the overall operating region is investigated.A novel control method for the AFFSSPM drive system, including the id =0, maximum torque per ampere, consta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017